Semiparametric additive transformation model under current status data

نویسندگان

  • Guang Cheng
  • Xiao Wang
چکیده

We consider the efficient estimation of the semiparametric additive transformation model with current status data. A wide range of survival models and econometric models can be incorporated into this general transformation framework. We apply the B-spline approach to simultaneously estimate the linear regression vector, the nondecreasing transformation function, and a set of nonparametric regression functions. We show that the parametric estimate is semiparametric efficient in the presence of multiple nonparametric nuisance functions. An explicit consistent B-spline estimate of the asymptotic variance is also provided. All nonparametric estimates are smooth, and shown to be uniformly consistent and have faster than cubic rate of convergence. Interestingly, we observe the convergence rate interfere phenomenon, i.e., the convergence rates of B-spline estimators are all slowed down to equal the slowest one. The constrained optimization is not required in our implementation. Numerical results are used to illustrate the finite sample performance of the proposed estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ef®ciency considerations in the additive hazards model with current status data

For current status data, LIN, OAKES and YING (1998) proposed a procedure for estimation of the regression parameters in the additive hazards model that makes clever use of martingale theory. However, one of the outstanding problems posed in the paper was the issue of ef®cient estimation, as their estimators do not attain the semiparametric information bound. In this paper, we explore this issue...

متن کامل

Efficient Estimation of the Partly Linear Additive Hazards Model with Current Status Data

This paper focuses on efficient estimation, optimal rates of convergence and effective algorithms in the partly linear additive hazards regression model with current status data. We use polynomial splines to estimate both cumulative baseline hazard function with monotonicity constraint and nonparametric regression functions with no such constraint. We propose a simultaneous sieve maximum likeli...

متن کامل

Estimation of a Semiparametric Transformation Model

This paper proposes consistent estimators for transformation parameters in semiparametric models. The problem is to find the optimal transformation into the space of models with a predetermined regression structure like additive or multiplicative separability. We give results for the estimation of the transformation when the rest of the model is estimated nonor semi-parametrically and fulfills ...

متن کامل

Parametric and semiparametric hypotheses in the linear model

The independent additive errors linear model consists of a structure for the mean and a separate structure for the error distribution. The error structure may be parametric or it may be semiparametric. Under alternative values of the mean structure, the best fitting additive errors model has an error distribution which can be represented as the convolution of the actual error distribution and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011